How to Increase a Drone's Flight Time and Lift Capacity

How to Increase a Drone's Flight Time and Lift Capacity

 By Charles Blouin, last updated: 30-10-2020

Video Tutorial - Improve Drone Flight Time

The goal of this report is to demonstrate a simple process for extending your multicopter flight time. Many concepts presented here also apply to fixed-wings vehicles.

The optimization process is a loop, so we need to start by making some assumptions. First, let’s assume that the drone already flies, so you have an existing design from which you know the weight and the battery size. Additionally, we will optimize a multi-rotor that is mostly hovering (our drone is neither a racing drone nor a competition drone).

alt Quadcopter Increase Drone Flight Time

To better illustrate the process, we will use the Otus Quadcopter as an example, though this method is applicable to any flying UAV.

The first unoptimized version of our quadcopter has:

  • 4 propellers: Gemfan 5040
  • 4 motors: Hypetrain 2207-2450Kv motors
  • 4 ESCs: Afro 20A Race Spec Mini ESC with BEC
  • 1 battery: Turnigy nano-tech 1300mAh 4S 45~90C Lipo Pack
  • Frame and payload
  • Otus Tracker
  • Flight time ≈ 4 minutes

1) How Does a Drone Fly?

The first step is to understand how a drone can fly and take-off. The rotation of the propellers generates thrust and allows the drone to rise and maintain flight. At hover, the combined thrust of the propellers is equal to the drone’s total weight.

From this assumption and with the weight of the drone, we can deduce the thrust required by each propeller in order to maintain hover. Here, our drone weighs 777g, so we need a total thrust of 7.6N to hover or 1.9N per propeller.

Drone Forces Diagram

 

To keep a good control authority, the maximum thrust achievable by the propeller should be about twice the hovering thrust. Keep in mind this is just a recommendation. Racing quads will have a much higher maximum thrust to weight ratio.

We are looking for the most efficient propeller producing 1.9N of thrust that has a maximum size of 6 inches, and can achieve 3.8 N of peak thrust.
We can vary parameters such as pitch, size, profile, material, and brand.

2) What Do We Mean by Efficiency?

Efficiency is the ratio of the output divided by the input. Here, the propellers convert mechanical energy to thrust.

alt Drone Propeller Efficiency

3) Choose a Propeller for the Quadcopter

Make an initial propeller selection based on manufacturer data. Unfortunately, propeller testing is not standardized and you cannot compare the data provided by different manufacturers. You can use our thrust stand and dynamometer Series 1585 to test all your propellers with the same motor and record thrust, torque, voltage, current, motor rotation speed, and vibration. Optionally, you can use the database upload feature of the app that will walk you through the test process with a test script.

We want to measure thrust, torque and rotation speed. Propeller data is independent from motor data when you rely on torque and speed. The thrust of a specific propeller depends only on the propeller speed and the incoming air speed, not on the motor powering the propeller. Regardless of the motor you choose, the thrust generated will be the same at a given rotation speed. This property is useful to check that your tests were performed correctly. The data points on a thrust vs. rotation speed graph for a single propeller tested with multiple motors should all be very close to the same line as in the image below.

alt Propeller Thrust vs. RPMExample: Gemfan 6030 Propeller with Different Motors

When you have the desired torque and speed for the most efficient propeller at hover, you can perform a search for the motor that is the most efficient at this torque and speed.

Let’s focus on only 3 propellers to keep this simple. We will test them with the Series 1585 thrust stand:

alt Increase Drone Flight Time Propeller

  • 6030R Gemfan => diameter: 6 in, pitch: 3 in, weight 2.22g
  • 6040R King Kong => diameter: 6 in, pitch: 4 in, weight 3.38g
  • 5040R Gemfan => diameter: 5 in, pitch: 4 in, weight 3.00g

The test can be done manually or with a script. We performed the test with a script and compared the results to those in our database. Here is a comparison of the propeller mechanical efficiency (N/W) as a function of thrust (N). Alt Propeller Efficiency vs. Thrust

As shown in the graph, at 1.9N, the best propeller is the Gemfan 6030 at 0.077N/W. We rule out the two other propellers as they have a lower efficiency.

alt Thrust Torque Rotation Speed

The Gemfan 6030 is the most efficient propeller at 1.9N and it generates 0.0184 N.m of torque at 1300 rad/s.

4) Choose the Most Efficient Motor for Your Propeller and Vehicle

Now that we found a propeller, we are looking for the most efficient motor at the operating point of 0.0184 N.m and 1300 rad/s. We will limit our search to 2 different motors for the purpose of this tutorial, but in reality, there are many more candidates to choose from.

alt Motors

This graph shows the mechanical efficiency of the tested motors when they are equipped with a Gemfan 6030. At 1.9 N of thrust, the efficiency of the Multistar is 68% while the efficiency of the EMAX is 60%. Thus, we conclude that for this specific propeller at hover, the most efficient motor is the Multistar Elite 2306.

alt Motor Efficiency vs. Thrust

The graph above shows the efficiency difference for the torque-speed line of two propellers. We did not determine that the Multistar is a better motor in general, only that it performs better for this specific propeller. The Emax may be more efficient than the Multistar with another propeller.

Another thing we must check is that this motor is also capable of generating the peak propeller thrust for sufficient control authority. Earlier, we said we are looking for the most efficient propeller at 1.9N of thrust that can also achieve 3.8N of peak thrust. At 3.8N, the motor must be capable of generating 0.035 N.m of torque at 1783 rad/s.

alt Thrust Torque Rotalion Speed

We confirm this graphically. This motor is capable of generating the 3.8N peak thrust as well.

5) Choose an ESC

Once the motor and propellers are chosen, we can select a suitable ESC. For now, we just pick an ESC capable of delivering the motor’s peak current of 7 Amps with a safety factor. We choose the Afro Race Spec Mini ESC which supports 20 Amps. There are some optimizations that can be done on the ESC, but that is outside the scope of this article.

alt UAV ESC Tester

6) Calculate the Flight Time

How the flight time is calculated:

The capacity of the battery (Ebattery in Wh) can be expressed as the Flight Time (FT) in hours, multiplied by the generated power (Power in Watt).

alt How to increase flight time of your UAV

The battery capacity (Ebattery) is equal to the weight of the battery (Wbattery in grams) multiplied by the energy density (sigmabattery in Wh/g).

alt Drone Battery

The total power (Power in Watt) is equal to the weight of the drone (Wdrone (g) = Wframe (g) + Wbattery (g)) divided by the propellers efficiency (propefficiency in g/W).

alt Power

The propeller efficiency is a function of the total weight of the drone divided by the number of propellers on your drone.

So by combining the equations, we obtain the flight time [eq1]:

alt FT

An increase in the weight of the battery increases division term in the equation above, but reduces the propeller efficiency.

Those formulas are implemented in the spreadsheet here:

Use our Google sheet to easily calculate your flight time.

There are some assumptions that you must add when using the Google sheet, such as the weight and capacity of your battery. Also, write the total weight of your quad (WITHOUT the battery) and the number of propellers. Now you have everything you need to calculate the flight time!

You can observe the effect of varying the battery capacity. As you can see, increasing the battery to a 33.3 mAh increases the flight time by a few minutes, but reduces the control authority. Going even bigger shows very little benefits, but increases noise and reduces control authority.

alt Drone Flight Time vs. Battery Capacity

Conclusion

We saw how to choose a propeller, motor, an ESC and battery for our drone, and how to compare efficiency, analyze data and calculate the flight time. All these modifications could change the total weight of your drone, especially if you choose another battery. You may need to restart the analysis if you significantly change the weight of the drone.

alt Diagramme

Regardless of the tool used to capture the data, we strongly recommend that you measure torque during your tests. This will allow you to separate motor and propeller data and measure efficiency. We designed multiple tools to make the data collection and analysis easier and more accurate. The automatic testing capability of the Series 1585 combined with the database should allow you to select the best motor, propeller and ESC in a few hours of testing. The tests can increase flight time, payload capacity, and it reduce the heat produced by the system, which increases the life of your components.

If you want to dig deeper in the subject of motor theory to fully optimize your motor, watch the video “Improving motor and propeller performance” on our channel: https://www.youtube.com/channel/UCy9AAnDP7ATvO2rneUE1xfQ

Leave a Comment

Comments must be approved before appearing.

* Required fields